Mead & lunt

The Myths of Electrification & ZNE Case Studies SAME Oklahoma

October 17, 2023

Renée Azerbegi PE, LEED AP, CEM, WELL AP

National Sustainability Market Leader / Sustainability Business Unit Leader

Agenda

- Why Electrify
- Relevant Policies
- Four Myths of Electrification
- Case Studies
- · Pathway to Electrify

Course length: 1 hour

Your course has been approved for AIA CES Course The Myths of Electrification & ZNE Case Studies (0005) for Mead & Hunt, Inc. (400103380). This course may be offered for AIA continuing education credits.

The course has also been reviewed and approved by GBCI for 1 CE Hour(s) with course ID (0920026134).

Learning Objectives

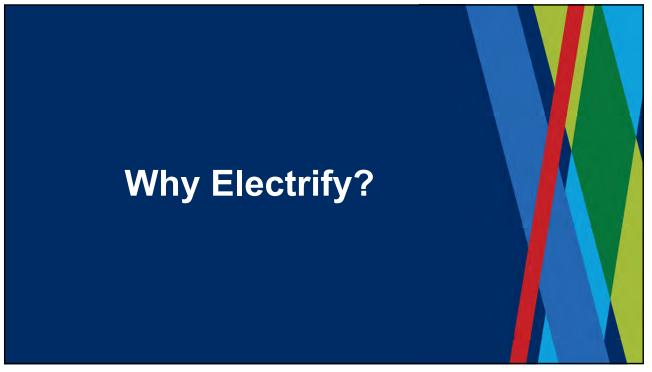
- Understand the benefits of building electrification as they relate to energy savings and emissions reductions and the full scope of electrifying buildings
- Be able to explain the myths of building electrification related to if it makes sense to electrify all types of buildings all at once across the country.
- Clarify the importance of and define beneficial building electrification which saves on all three of the following: energy, emissions and cost.
- Overcome barriers to building electrification by taking the first steps towards electrification planning.
- · Provide case studies of zero net energy all electric buildings

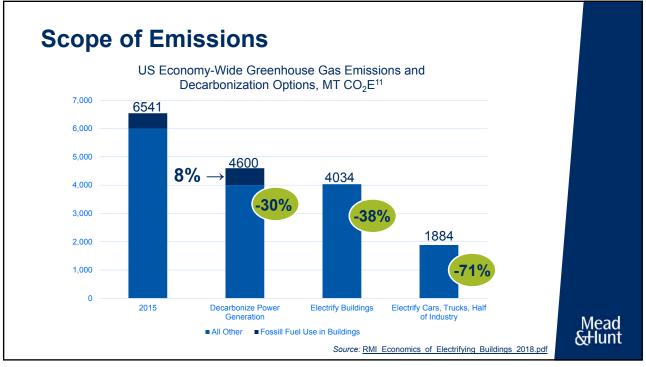
Sustainability Group Markets & Services

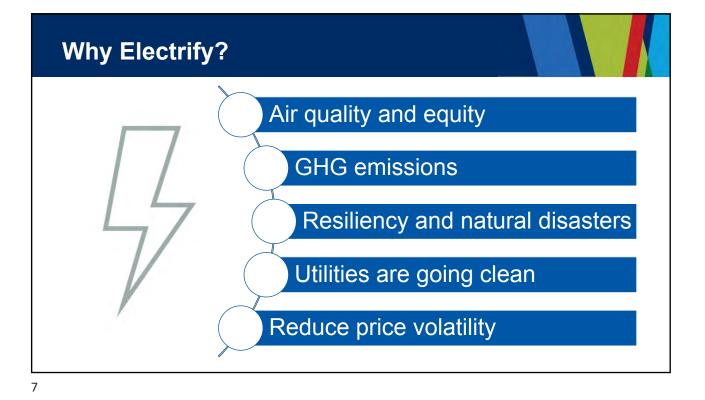
EXPERTISE

- Commissioning
- Decarbonization Planning and Modeling
- Embodied Carbon and Daylight Analysis
- Energy Consulting
- Green Building Rating Systems
- Net Zero Energy and Carbon Consulting
- Resiliency Consulting
- Sustainability Consulting
- Sustainability Planning
- Sustainability Reporting

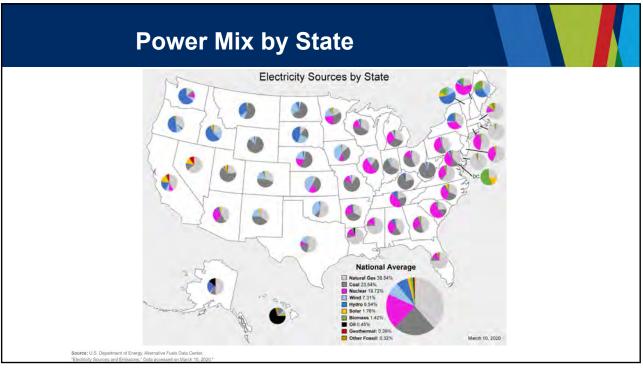
US Forest Service Laboratory Corvallis, OR

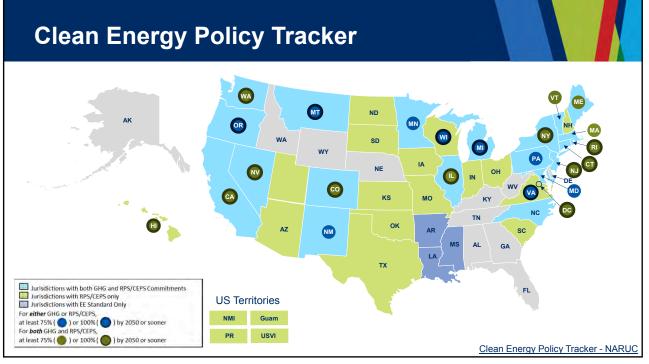

GSA Los Angeles Courthouse Los Angeles, CA

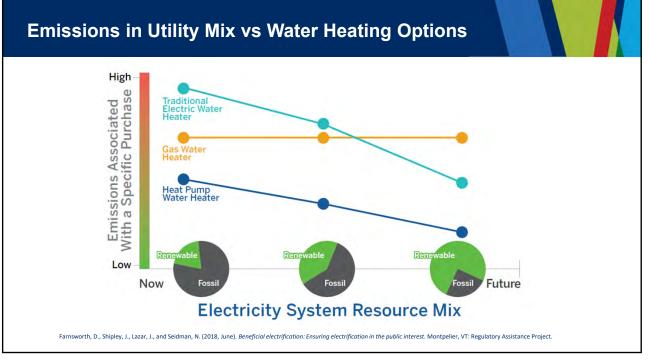


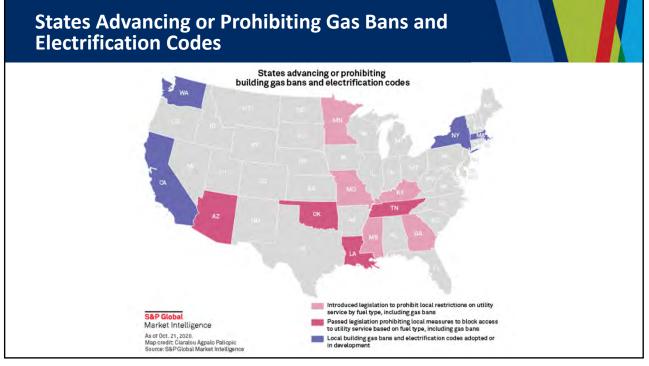

NIST Building 1, Wings 3 and 6 Boulder, CO

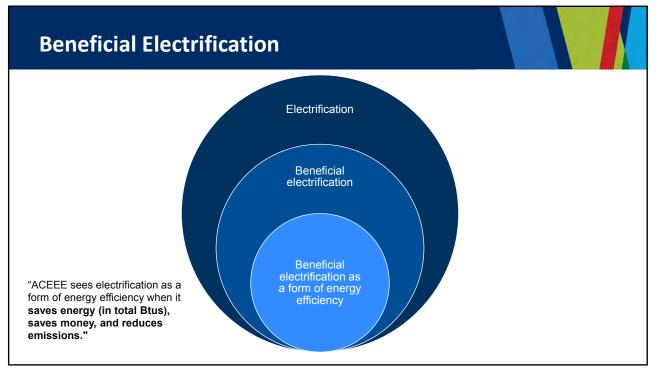
The Cesar Chavez Memorial Building and Parking Garage Denver, COmmercere


The Innovators


- New York (Local Law 97)
- Seattle (Energy Code)
- Massachusetts (CMR 780)
- California (2022 Zero Code)
- Denver (Net Zero Implementation Plan, All electric by 2027)
- Department of Defense (March 2023 Memorandum)
- Natural gas restrictions
- All electric buildings
- Carbon emissions


Myth #1


Let's electrify all of the U.S. now!



Efficiency First!

- New construction
 - Energy modeling
 - Energy usage and energy cost savings
 - Life-cycle cost analysis
 - Resource life-cycle cost analysis
 - Triple bottom line analysis

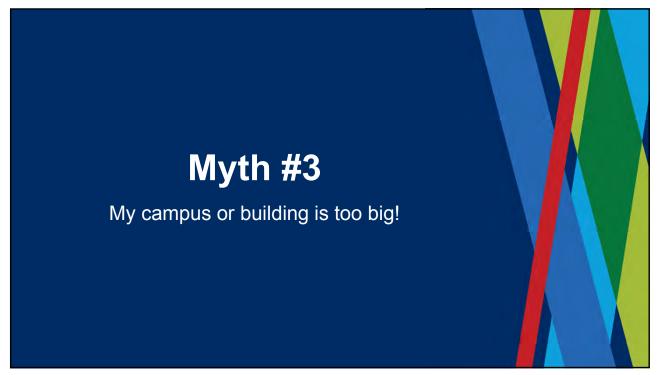
State of Colo Life Cycle Co			al Offi	ce Renova	tion		
LIFE CYCLE COST ALTERNATIVES ALTERNATE 1 ALTERNATE 2 ALTERNATE 3	SYSTEM COMPONENT HVAC HVAC	DESCRIPTION OPT1 - VRF OPT2 - FCU - BLR & CHLR OPT3 - FCU - CHLR-HTR	PRESENT VALUE \$17,670,107 \$11,378,479 \$13,210,958				
OPT1 - VRF	COST	COST DESCRIPTION	COST TYPE	IF NONRECURRING THEN WHAT YEAR	IS COST ESTIMATION A FUTURE OR PRESENT COST	TEXT DESCRIPTION	PRESENT VALUE
INITIAL CAPITAL COST	\$9,595,600	Construction	Nonrecurring	0	PRESENT COST	80 \$/SF	\$9,595,600
ENERGY COST - ELECTRIC	\$173,096	Energy - Electric	Recurring			30 years of electric bills	\$3,276,707
ENERGY COST - FUEL	\$0	Energy - Fuel	Recurring			30 years of NGAS bills	\$0
REPLACEMENT COST	\$9,595,600	Replacement	Nonrecurring	20	PRESENT	Full system replacement costs	\$9,595,600
ANNUAL MAINTENANCE COST	\$0	Maintenance	Recurring			30 years of maintenance costs	\$0
REMAINING LIFE OF THE EQUIPMENT	-\$4,797,800	Salvage	Nonrecurring	30	PRESENT	10 years life remaining	-\$4,797,80

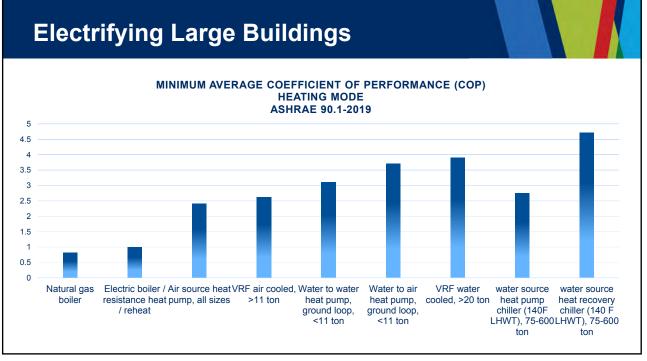
Airport- Triple Bottom Line Analysis

Score (1-5, 1 is best)		Option 1 Traditional CUP,	Option 2 Hybrid CUP - Geo- Exchange, Water-	Option 3	Option 4	Option 5
Description	Owner Weighting Factor	Water-Cooled Chillers, Natural Gas Boilers, Cooling Towers, Water Economizer	Cooled Chillers with Heat Recovery Chiller, Natural Gas Boilers, Cooling Towers, Water Economizer	Air Cooled Heat Recovery Chillers, Electric Boilers	Chiller-Heaters with Geo-Exchange	Heat Recovery Chillers with Geo- Exchange
First Cost with Rebates	66%	2	4	2	4	5
Life Cycle Cost	100%	1	3	1	3	5
Annual Maintenance Costs	100%	5	5	3	1	1
Replacement Costs	100%	1	2	4	3	3
Expandability / Future Flexibility	100%	1	2	1	2	2
Energy Savings	100%	3	1	3	1	1
Water Conservation	66%	5	4	1	1	1
Community Impact / Perception	33%	5	3	4	3	3
Innovation	33%	5	4	4	3	3
Carbon/Greenhouse Gas Reductions	66%	4	1	3	1	1
CUP Footprint	33%	3	5	3	2	1
Score		22.6	22.9	19.6	16.6	18.9
Overall Ranking (1 is best)		4	5	3	1	2

Efficiency First!

- Existing building
 - Re/retro-commissioning
 - Energy audits
 - Renewable energy feasibility studies
 - Replacement vs. end-of-life

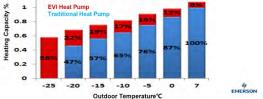

Metropolitan State University, Denver- Joint Student Success Building - Energy Audit and Retro-Cx Study



- Energy cost savings of \$12,000 per year, not including lighting controls saving
- 13% of the annual utility spend for the building
- Most measures identified through the energy audit have a return on investment of less than one year

21

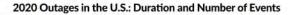
Federal Existing Building Energy projects South Dakota Army National Guard, SD Energy audits of all facilities done every 4 years USFS Corvallis Laboratory, OR Commissioning of 94k sf laboratory, mechanical system upgrades GSA Los Angeles Courthouse, CA - Recommissioning of 600k sf LEED Platinum courthouse USFS Shadow Mountain Village, Or esidences and vehicle maintenance buildings Readiness Center, Cedartown, GA

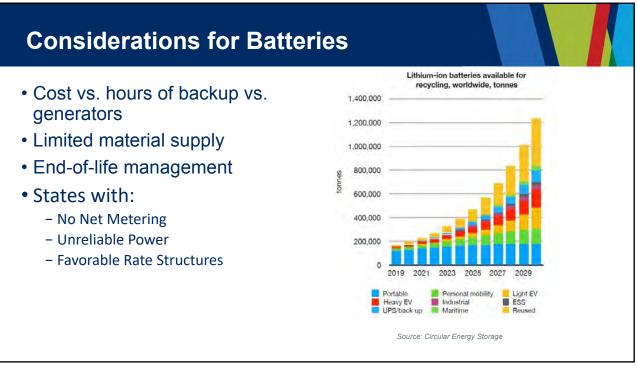


Electrifying Large Buildings

- Key considerations:
 - Electrical service capacity
 - Back up heat in cold climates
 - Cold climate heat pumps
 - Supply of large heat pumps
 - Operating cost
 - Thermal storage
 - High hot water demanding buildings
 - Refrigerant types

Indoor Temperature: 20/15°C

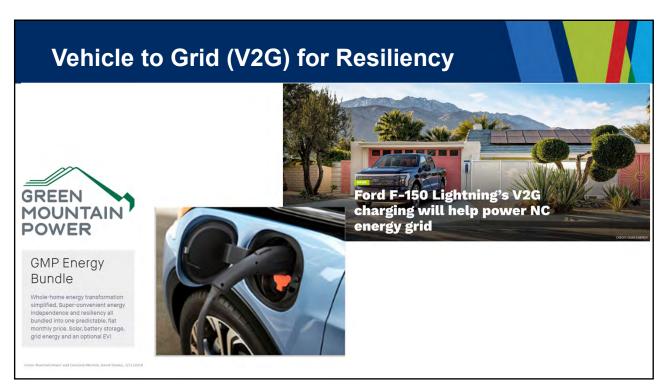




FIX

Grid Reliability and Energy Sources

- Singe source of energy vs. multiple sources
- Microgrids
- Solar PV + batteries
 - Demand (kW)
 - Energy (kWh)
 - Time of use rates



Electric Vehicle Considerations

- Cold weather performance
- · Level vs. time plugged in
- Metering to charge users
- Electric capacity

Levels	Cost Range	Charge Time	Electric Capacity	Voltage
Level 1	\$200	8-12 hrs	1.2 – 1.8 kW	120 V AC
Level 2	\$500-\$1000	4-8 hrs	3.6 – 22 kW	240 V AC
Level 3 or DC Fast Charger	\$20,000+	20-30 min	50 kW +	480-1000 V AC
	·			Source: plug ir

University of Colorado, Anschutz Campus, Campus Safety Bldg.

27,900 sf ZNE Features

- Heat pumps with chilled water return loop as heat recovery from campus utility plant
- High efficiency roof
- Ultra low lighting power density
- All electric

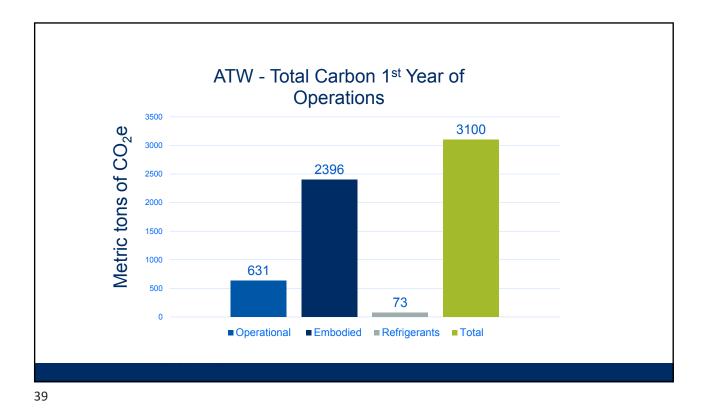
Existing Facility Decarbonization Plan

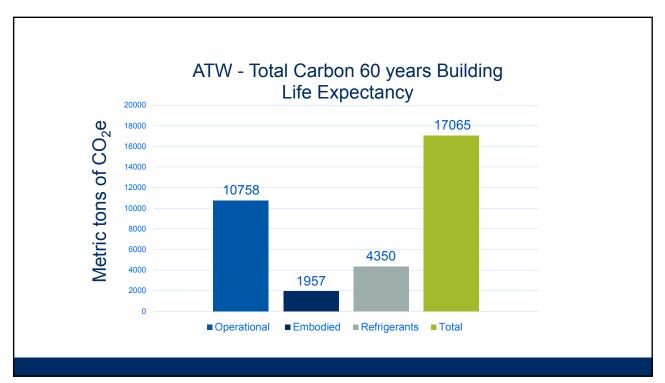
- ASHRAE Level 2 Energy Audit
- Photovoltaic Feasibility
- Electrification Building
 Planning
- Electric Vehicle Planning
- Daylight Study
- Universal Design Analysis

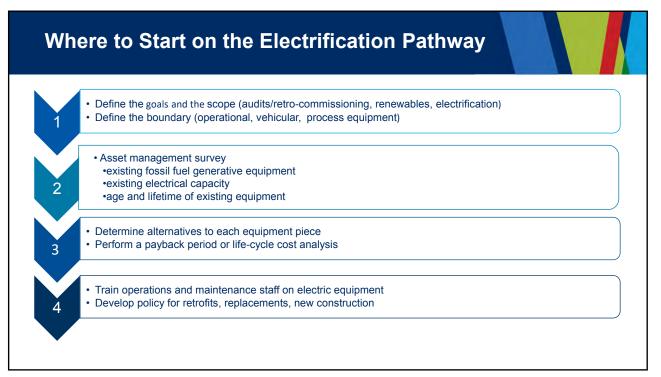
Rochester International Airport, Decarbonization and Universal Design Plan, Rochester, MN

New Building Decarbonization Design Appleton International Airport (ATW) - Refrigerants

Refrigerants in chillers


Charge = 500 lbs


R-410a





Pathway to Electrification

Considerations

- Discuss electrification in master planning or sustainability planning for military installations
- Understand the code requirements around electrification
- When electrifying, consider the bigger picture of decarbonization and look at all types of carbon in a building
- Approach for new construction vs existing facilities in electrification and decarbonization planning

